幂函数运算法则

时间:2024-05-03 18:46:20编辑:米尔

幂函数运算法则:同底数幂相乘,底数不变,指数相加,即a^m*a^n=a^【m+n】;同底数幂相除,底数不变,指数相减,即a^m/a^n=a^【m-n】等。

运算法则

同底数幂相乘,底数不变,指数相加,即a^m*a^n=a^【m+n】

同底数幂相除,底数不变,指数相减,即a^m/a^n=a^【m-n】,

幂的乘方,底数不变,指数相乘,即【a^m】^n=a^【mn】,

积的乘方,等于积里的每个因式分别乘方,然后再把所得的幂相乘,即【a^mb^n】^p=a^【mp】*b^【np】.

【其中m,n,p都是整数,且a,b均不为0。

幂函数的概念

形如y=xα(a∈R)的函数称为幂函数,其中x是自变量,α为常数。

注:幂函数与指数函数有本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置。

幂函数的性质

取正值

当α>0时,幂函数y=x^a有下列性质:

a、图像都经过点(1,1)【0,0);

b、函数的图像在区间[0,+∞】上是增函数;

c、在第一象限内,α>1时,导数值逐渐增大;0<α<1时,导数值逐渐减小,趋近于0。

取负值

当α<0时,幂函数y=x^a有下列性质:

a、图像都根据点(1,1);

b、图像在区间(0,+∞)上是减函数;

c、在第一象限内,有两条渐近线,自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。

取零

当a=0时,幂函数y=xa有下列性质:

a、y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。【00没有意义)

上一篇:抢篮板

下一篇:没有了